Calculation of Eigenfields for the European XFEL Cavities

Wolfgang Ackermann, Erion Gjonaj, Wolfgang F. O. Müller, Thomas Weiland Institut Theorie Elektromagnetischer Felder, TU Darmstadt

Overview

- Task
 - Calculation of fields for the European XFEL cavities in 3D considering <u>coupling ports</u> as well as <u>non-ideal geometries</u>

- Coupling ports:

- Modeling of ports
- Include ports in the eigenvalue formulation
- Implementation for large scale applications
- Non-ideal geometries
 - Support flexible geometry description in 3D

- Particle accelerators
 - Linear accelerator at DESY, Hamburg

Available grid structures

Modeling using CST Studio Suite

- 3d.tet:

NodeID, X, Y, Z EdgeID, NodeID0, NodeID1 FaceID, EdgeID0, EdgeID1, EdgeID2 ElemID, FaceID0, FaceID1, FaceID2, FaceID3 ElemID, NodeID0, NodeID1, NodeID2, NodeID3 Object3D GroupID, #Elems <immediately followed by> ElemID List Object2D GroupID, #Faces <immediately followed by> FaceID List Object1D GroupID, #Edges <immediately followed by> EdgeID List Object0D GroupID, #Nodes <immediately followed by> NodeID List

- bc3d.tet

Obj3D_ID, MediaCode

Obj2D_ID, BCCode Obj1D_ID, BCCode

PEC, PMC and port boundary conditions can be extracted

Modeling using CST Studio Suite

- 3d.tet: NodeID, X, Y, Z EdgeID, NodeID0, NodeID1 FaceID, EdgeID0, EdgeID1, EdgeID2 ElemID, FaceID0, FaceID1, FaceID2, FaceID3 ElemID, NodeID0, NodeID1, NodeID2, NodeID3 Object3D GroupID, #Elems <immediately followed by> ElemID List Object2D GroupID, #Faces <immediately followed by> FaceID List Object1D GroupID, #Edges <immediately followed by> EdgeID List Object0D GroupID, #Nodes <immediately followed by> NodeID List

Modeling using CST Studio Suite

- 3d.tet:

Modeling using CST Studio Suite

- 3d.tet:

insert additional control points (at the surface)

Modeling using CST Studio Suite

- 3d.slim:

Input coupler and coupler to extract unwanted modes

Input coupler and coupler to extract unwanted modes

Input coupler and coupler to extract unwanted modes

Problem definition

- Accelerating field

9-Cell Cavityincluding couplers

- Problem formulation
 - Fundamental equations

curl
$$1/\mu_{\rm r}$$
 curl $\vec{E} - \left(\frac{\omega}{c_0}\right)^2 \varepsilon_{\rm r} \vec{E} \Big|_{\vec{r} \in \Omega} = 0$

$$\operatorname{div}(\varepsilon \vec{E})\Big|_{\vec{r}\in\Omega}=0$$

- Boundary conditions

$$\vec{n} \times \vec{E} \Big|_{\vec{r} \in \partial \Omega_{\mathsf{PEC}}} = 0$$

$$\vec{n} \times \operatorname{curl} \vec{E} + j \frac{\omega}{c_0} \vec{n} \times (\vec{n} \times \vec{E}) \Big|_{\vec{r} \in \partial \Omega_{\mathsf{Port}}} = 0$$

$$\begin{array}{rcl} {\rm curl} \vec{H} &=& \partial \vec{D} / \partial t \\ {\rm curl} \vec{E} &=& -\partial \vec{B} / \partial t \\ {\rm div} \vec{D} &=& 0 \\ {\rm div} \vec{B} &=& 0 \end{array}$$

Maxwell's equations

$$\vec{D} = \varepsilon \vec{E} \\ \vec{B} = \mu \vec{H}$$

Material relations

=•

Wave propagation in the applied coaxial lines

200 $f_0 = 1.3 \text{ GHz}$ - Main coupler $k \cdot m$ 150 TEM 60.0 mm **Dispersion relation** 100 12.5 mm $k = \frac{2\pi}{c_0} \sqrt{f^2 - f_c^2}$ 50 TE_{11} TE₂₁ 0 2 6 8 10 4 0 propagation f/GHz e^{jkz} $f > f_c$: 400 - HOM coupler $f_0 = 1.3 \text{ GHz}$ $k \cdot m$ damping 300 16.0 mm TEM $e^{-\alpha z}$ $f < f_c$: 200 3.4 mm TE₁₁ TE₂₁ 100 $\alpha_{Main} = 1/13.6 \text{ mm}$ $\alpha_{\rm HOM} = 1/4.77~{\rm mm}$ 0 5 20 ƒ/GHz 5 10 15 0

- Problem formulation
 - Local Ritz approach

$$\vec{E} = \vec{E}(\vec{r})$$
$$= \sum_{i=1}^{n} \alpha_i \, \vec{w}_i(\vec{r})$$

- \vec{w} vectorial function
- α_i scalar coefficient
- i global index
- n number of DOFs

$$\begin{aligned} \operatorname{curl} 1/\mu_{\Gamma} \operatorname{curl} \vec{E} &= \left(\frac{\omega}{c_{0}}\right)^{2} \varepsilon_{\Gamma} \vec{E} \Big|_{\vec{r} \in \Omega} \\ \operatorname{div}(\varepsilon \vec{E}) \Big| &= 0 \\ \vec{r} \in \Omega \end{aligned} + \text{boundary conditions} \end{aligned}$$

continuous eigenvalue problem

n
$$A_{ij} = \iiint_{\Omega} 1/\mu_{r} \operatorname{curl} \vec{w}_{i} \cdot \operatorname{curl} \vec{w}_{j} d\Omega$$

 $B_{ij} = \iiint_{\Omega} \varepsilon_{r} \vec{w}_{i} \cdot \vec{w}_{j} d\Omega$
 $C_{ij} = \iint_{\partial\Omega} \sqrt{\varepsilon_{r}/\mu_{r}} (\vec{n} \times \vec{w}_{i}) \cdot (\vec{n} \times \vec{w}_{j}) dA$

$$A\vec{\alpha} + j\frac{\omega}{c_0}C\vec{\alpha} + (j\frac{\omega}{c_0})^2 B\vec{\alpha} = 0$$

discrete eigenvalue problem

Galerki

Numerical formulation

- Function definition

FEM06: lowest order approximation (edge elements, Nedelec)

	Space	Basis functions	Assoc.
scalar	$ ilde{\mathcal{V}}_1$	ϕ_i	$\{i\}$
	$ ilde{\mathcal{V}}_2$	$\phi_i\phi_j$	$\{ij\}$
	$\tilde{\mathcal{V}}_3$	$\phi_i\phi_j(\phi_i-\phi_j),$	$\{ij\}$
		$\phi_i\phi_j\phi_k$	$\{ijk\}$
vector	$ ilde{\mathcal{A}}_1$	$\phi_i abla \phi_j - \phi_j abla \phi_i$	$\{ij\}$
	$ ilde{\mathcal{A}}_2$	$3\phi_j\phi_k\nabla\phi_i-\nabla(\phi_i\phi_j\phi_k),$	$\{ijk\}$
		$3\phi_k\phi_i abla\phi_j- abla(\phi_i\phi_j\phi_k)$	$\{ijk\}$
	$ ilde{\mathcal{A}}_3$	$4\phi_j\phi_k(\phi_j-\phi_k) abla\phi_i- abla(\phi_i\phi_j\phi_k(\phi_j-\phi_k)),$	$\{ijk\}$
		$4\phi_k\phi_i(\phi_k-\phi_i)\nabla\phi_j-\nabla(\phi_j\phi_k\phi_i(\phi_k-\phi_i)),$	$\{ijk\}$
		$4\phi_i\phi_j(\phi_i-\phi_j) abla\phi_k- abla(\phi_k\phi_i\phi_j(\phi_i-\phi_j)),$	$\{ijk\}$
		$4\phi_j\phi_k\phi_l abla\phi_i- abla(\phi_i\phi_j\phi_k\phi_l),$	$\{ijkl\}$
		$4\phi_k\phi_l\phi_i abla\phi_j- abla(\phi_i\phi_j\phi_k\phi_l),$	$\{ijkl\}$
↓ I		$4\phi_l\phi_i\phi_j abla\phi_k- abla(\phi_i\phi_j\phi_k\phi_l)$	$\{ijkl\}$

Numerical formulation

- Function definition

	Space	Basis functions	Assoc.
alar	$ ilde{\mathcal{V}}_1$	ϕ_i	$\{i\}$
	$ ilde{\mathcal{V}}_2$	$\phi_i\phi_j$	$\{ij\}$
- SC	$\tilde{\mathcal{V}}_3$	$\phi_i \phi_j (\phi_i - \phi_j),$	$\{ij\}$
Ļ		$\phi_i\phi_j\phi_k$	$\{ijk\}$
vector	$ ilde{\mathcal{A}}_1$	$\phi_i abla \phi_j - \phi_j abla \phi_i$	$\{ij\}$
	\mathcal{A}_2	$3\phi_j\phi_k\nabla\phi_i-\nabla(\phi_i\phi_j\phi_k),$	$\{ijk\}$
		$3\phi_k\phi_i abla\phi_j- abla(\phi_i\phi_j\phi_k)$	$\{ijk\}$
	$ ilde{\mathcal{A}}_3$	$4\phi_j\phi_k(\phi_j-\phi_k)\nabla\phi_i-\nabla(\phi_i\phi_j\phi_k(\phi_j-\phi_k)),$	$\{ijk\}$
		$4\phi_k\phi_i(\phi_k-\phi_i)\nabla\phi_j-\nabla(\phi_j\phi_k\phi_i(\phi_k-\phi_i)),$	$\{ijk\}$
		$4\phi_i\phi_j(\phi_i-\phi_j) abla\phi_k- abla(\phi_k\phi_i\phi_j(\phi_i-\phi_j)),$	$\{ijk\}$
		$4\phi_j\phi_k\phi_l abla\phi_i- abla(\phi_i\phi_j\phi_k\phi_l),$	$\{ijkl\}$
		$4\phi_k\phi_l\phi_i abla\phi_j- abla(\phi_i\phi_j\phi_k\phi_l),$	$\{ijkl\}$
Ļ		$4\phi_l\phi_i\phi_j\nabla\phi_k-\nabla(\phi_i\phi_j\phi_k\phi_l)$	$\{ijkl\}$

FEM12: higher order approximation

ROWAVE THEORY AND TECHNIQUES Conforming Hierarchical etrahedral Meshes 2006 curl ANUARY Of H Pär Ingelström Set 54. NO A New Basi õ

Numerical formulation

- Function definition

	Space	Basis functions	Assoc.
scalar	$ ilde{\mathcal{V}}_1$	ϕ_i	$\{i\}$
	$ ilde{\mathcal{V}}_2$	$\phi_i\phi_j$	$\{ij\}$
	$\tilde{\mathcal{V}}_3$	$\phi_i \phi_j (\phi_i - \phi_j),$	$\{ij\}$
Ļ		$\phi_i\phi_j\phi_k$	$\{ijk\}$
Vector	$ ilde{\mathcal{A}}_1$	$\phi_i abla \phi_j - \phi_j abla \phi_i$	$\{ij\}$
	$ ilde{\mathcal{A}}_2$	$3\phi_j\phi_k abla\phi_i - abla(\phi_i\phi_j\phi_k),$	$\{ijk\}$
		$3\phi_k\phi_i abla\phi_j- abla(\phi_i\phi_j\phi_k)$	$\{ijk\}$
	$ ilde{\mathcal{A}}_3$	$4\phi_j\phi_k(\phi_j-\phi_k) abla\phi_i- abla(\phi_j\phi_k(\phi_j-\phi_k)),$	$\{ijk\}$
		$4\phi_k\phi_i(\phi_k-\phi_i) abla\phi_j- abla(\phi_j\phi_k\phi_i(\phi_k-\phi_i)),$	$\{ijk\}$
		$4\phi_i\phi_j(\phi_i-\phi_j) abla\phi_k- abla(\phi_k\phi_i\phi_j(\phi_i-\phi_j)),$	$\{ijk\}$
		$4\phi_j\phi_k\phi_l abla\phi_i- abla(\phi_i\phi_j\phi_k\phi_l),$	$\{ijkl\}$
		$4\phi_k\phi_l\phi_i abla\phi_j- abla(\phi_i\phi_j\phi_k\phi_l),$	$\{ijkl\}$
Ļ		$4\phi_l\phi_i\phi_j\nabla\phi_k-\nabla(\phi_i\phi_j\phi_k\phi_l)$	$\{ijkl\}$

FEM20: higher order approximation

OWAVE THEORY AND TECHNIQUES Conforming Hierarchical etrahedral Meshes 2006 curl ANUARY Of H Pär Ingelström Set 54, NC A New Basi õ

Numerical formulation

- Implementation

$$a_{ij} = \iiint_{\Omega} 1/\mu_{\mathsf{r}} \operatorname{curl} \vec{w_i} \cdot \operatorname{curl} \vec{w_j} \, \mathrm{d}\Omega$$

$$b_{ij} = \iiint_{\Omega} \varepsilon_{\Gamma} \, \vec{w_i} \cdot \vec{w_j} \; \mathrm{d}\Omega$$

Edge basis elements

🔻 🛛 Matrix A

(* Element matrix calculation *)
fktA2[i_Integer, j_Integer] :=
 Integrate[(curlW[i].curlW[j]) * jacobi,
 {u1, 0, 1}, {u2, 0, 1 - u1}, {u3, 0, 1 - u1 - u2}];
matA2 = Array[fktA2, {nEdges, nEdges}];
TableForm[Flatten[matA2]]

🔻 🛛 Matrix B

(* Element matrix calculation *)
fktB2[i_Integer, j_Integer] :=
 Integrate[(W[i].W[j]) * jacobi, {u1, 0, 1},
 {u2, 0, 1 - u1}, {u3, 0, 1 - u1 - u2}];
matB2 = Array[fktB2, {nEdges, nEdges}];
TableForm[Flatten[matB2]]

contribution of element-matrices ready availabe

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 22

Computational Model

- Eigenvalue formulation
 - Fundamental equation

$$A\vec{\alpha} + j\frac{\omega}{c_0}C\vec{\alpha} + (j\frac{\omega}{c_0})^2 B\vec{\alpha} = 0$$

- Matrix properties

Notation: A - stiffness matrix B - mass matrix C - damping matrix

$$A, B, C \in I\!\!R^{n \times n} \quad A = A^T, B = B^T, C = C^T \quad A \ge 0, B > 0, C \ge 0$$

- Fundamental properties

 $AN = CN = 0 \quad \text{for proper chosen scalar } \Phi_i \text{ and vector basis functions } \vec{\omega}_i$ $\underbrace{N^T A \vec{\alpha} + j \frac{\omega}{c_0}}_{0} \underbrace{N^T C \vec{\alpha} + (j \frac{\omega}{c_0})^2 N^T B \vec{\alpha} = 0}_{0}$ $\text{static } \omega = 0 \quad \text{or} \quad \text{dynamic} \quad N^T B \vec{\alpha} = S \vec{\alpha} = 0$

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 23

Computational Model

- Fundamental properties
 - Number of eigenvalues

$$Q(\lambda) = A + \lambda C + \lambda^2 B$$
 $\lambda \stackrel{!}{=} j \frac{\omega}{c_0}$

Matrix B nonsingular:

- matrix polynomial $Q(\lambda)$ is regular
- 2n finite eigenvalues
- Orthogonality relation

 $A\vec{\alpha} + \lambda C\vec{\alpha} + \lambda^2 B\vec{\alpha} = 0$

$$(\lambda_1 - \lambda_2) \cdot [\vec{\alpha}_2^H C \vec{\alpha}_1 + (\lambda_1 + \lambda_2) \vec{\alpha}_2^H B \vec{\alpha}_1] = 0$$

If $C \not \prec B$ the vectors $\vec{\alpha_1}$ and $\vec{\alpha_2}$ are no longer B-orthogonal: $\vec{\alpha_1} \not \perp_B \vec{\alpha_2}$

Notation:

- A stiffness matrix
- B mass matrix
- C damping matrix
- $A \geq \mathbf{0}, B > \mathbf{0}, C \geq \mathbf{0}$

- Fundamental properties
 - Orthogonality relation $A\vec{\alpha} + \lambda C\vec{\alpha} + \lambda^2 B\vec{\alpha} = 0$

$$(\lambda_1 - \lambda_2) \cdot [\vec{\alpha}_2^H C \vec{\alpha}_1 + (\lambda_1 + \lambda_2) \vec{\alpha}_2^H B \vec{\alpha}_1] = 0$$

- Scalar product
 - 1) $< \alpha \vec{x} + \alpha' \vec{x}', \vec{y} >= \alpha < \vec{x}, \vec{y} > + \alpha' < \vec{x}', \vec{y} >$ 2) $< \vec{y}, \vec{x} >= \overline{<\vec{x}, \vec{y} >}$
 - 3) $\vec{x} \neq 0 \rightarrow \langle \vec{x}, \vec{x} \rangle > 0$

currently not available

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 25

Computational Model

- Eigenvalue formulation
 - Fundamental equation

- Companion notation

$$A\vec{\alpha} + \lambda C\vec{\alpha} + \lambda^2 B\vec{\alpha} = 0 \qquad \lambda \stackrel{!}{=} j \frac{\omega}{c_0}$$

A, B, C: real symmetric conjugate complex eigenvalues

 $\begin{pmatrix} -A & C \\ 0 & I \end{pmatrix} \cdot \begin{pmatrix} \vec{\alpha} \\ \lambda \vec{\alpha} \end{pmatrix} = \lambda \begin{pmatrix} 0 & B \\ I & 0 \end{pmatrix} \cdot \begin{pmatrix} \vec{\alpha} \\ \lambda \vec{\alpha} \end{pmatrix}$

 $\begin{pmatrix} -A & 0 \\ 0 & B \end{pmatrix} \cdot \begin{pmatrix} \vec{\alpha} \\ \lambda \vec{\alpha} \end{pmatrix} = \lambda \begin{pmatrix} C & B \\ B & 0 \end{pmatrix} \cdot \begin{pmatrix} \vec{\alpha} \\ \lambda \vec{\alpha} \end{pmatrix}$

- Notation:
- A stiffness matrix
- B mass matrix
- C damping matrix

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 26

Computational Model

- Eigenvalue solution
 - Fundamental equation

$$A\vec{\alpha} + \lambda C\vec{\alpha} + \lambda^2 B\vec{\alpha} = 0 \qquad \lambda \stackrel{!}{=} j \frac{\omega}{c_0}$$

- Subspace projection method
 - $\vec{\alpha} = V\vec{\alpha}_{\vee}$ $V^{T}AV\vec{\alpha}_{\vee} + \lambda V^{T}CV\vec{\alpha}_{\vee} + \lambda^{2}V^{T}BV\vec{\alpha}_{\vee} = 0$
- Companion notation for the projected system

$$\begin{pmatrix} -V^{T}AV & 0\\ 0 & V^{T}BV \end{pmatrix} \cdot \begin{pmatrix} \vec{\alpha}_{\vee}\\ \lambda \vec{\alpha}_{\vee} \end{pmatrix} = \lambda \begin{pmatrix} V^{T}CV & V^{T}BV\\ V^{T}BV & 0 \end{pmatrix} \cdot \begin{pmatrix} \vec{\alpha}_{\vee}\\ \lambda \vec{\alpha}_{\vee} \end{pmatrix}$$

- B mass matrix
- C damping matrix

ParMeTiS, VTK and Problem definition CST - Studio Suite[®] - Geometry 9-Cell Cavity including couplers Distribution on 64 nodes - Task

Search for the π - mode field distribution

Efficient solution of large problems

- Domain composition

cavity model

parallel computing

Fields along the axis of an accelerator cavity

2 064 944 cells

Simulation results

- Transversal grid information
 - Cut plane plots

CST – Microwave Studio

Symmetric mesh generation

- Transversal grid information
 - Cut plane plots

- Simulation results
 - Transverse mesh properties

arbitrary distribution of tetrahedra

tetrahedra faces aligned along coordinate faces symmetric distribution of tetrahedra

Simulation results

Eigenvalue distribution

 $|\vec{E}|$ in linear scale

 $|\vec{E}|$ in linear scale

